
NASA-TM-112077

RNR-88-011

NEW SOFTWARE FOR LARGE DENSE SYMMETRIC

GENERALIZED EIGENVALUE PROBLEMS

USING SECONDARY STORAGE*

ROGER G. GRIMES

HORST D. Sn_ON

Boeing Computer Services

Engineering Technology Applications Division

P.O. Box 24346, M/S 7L-21

Seattle, WA 98124--0346

May, 1987

Keywords: eigenvalue problems, block Householder reduction, vector computers, super-

computers, out-of-core algorithms.

AMS Subject Classification: 65F15, 88HI0

1. INTRODUCTION

Quantum mechanical bandstructure computations require repeated computation of a large

number of eigenvalues of a symmetric generalized eigenproblem. In previous work of the

authors [5] the application of a block Lanczos algorithm, and a modification of the packed

EISPACK routines, have been considered for the numerical solution of such eigenvalue

problems arising in the theoretical calculation of pressure and volume at metalllzation of

BaTe (see [10]). Both approaches were limited in the size of problem, which could be

handled by the existing software. The largest feasible problem for each method on a 4

Mword Cray X-MP/24 was about of the order of 1900. Here we report numerical results

with some new software, which has been developed recently. This software permits the
user to fully utilize a fast secondary storage device such as the SSD. On a 128 Mword SSD

now the solution of generalized eigenvalue problems of order up to 8000 is feasible. In this

*This work is supported through NSF Grant No. ASC-8519354.



note we give a brief summary of the new software and present some performance results

and a comparison with the results in [5].

We consider algorithms for the efficient solution of the symmetric generalized eigenproblem

AX= BXA. (1)

The new software provides a true out-of-core implementation of some standard routines

from EISPACK. The approach is to first reduce (1) to standard form by applying the
Cholesky factor L of B as follows

(L-IAL-T)(LTX) = (LrX)A

or

where

cY = YA, (2)

C = L-*AL -T

Y = LTX. (3)

The matrix B is factored using the block Cholesk'y algorithm where B is initially stored

in secondary storage and is overwritten with its factor L [4,9].

The next step in the standard EISPACK approach would be to reduce C to tridiagonal

form using a sequence of Householder transformations. The application of Householder

transformations to reduce C to tridiagonal form requires access to all of the unreduced

portion of C for the reduction of each column. This access requirement would incur O(n 3)

I/O transfers. This amount of I/O is too high for an out-of-core implementation, since it

would effectively limit the efficiency of the algorithm by the transfer speed to and from
secondary storage.

Instead a block Householder transformation is used to reduce C to a band matrix, where

the band matrix will have small enough bandwidth to be held in central memory. This

reduction is accomplished by first symmetrically partitioning the matrix C into equal

sized blocks with maximum block size p. Then for each block column we compute the

QR factorization of the matrix comprised of the blocks which are below the diagonal

block. The product of Householder transformations used to compute the QR factorization

is accumulated in the WY representation described in [1]. This representation is then

applied simultaneously to the left and the right of the remainder of the matrix. When

all block columns except the last is reduced in this fashion, the result is a band matrix

with bandwidth p which is similar to the matrix C in (2). The I/O requirements of the

block Householder transformation are of O(nS/p). Hence for any reasonable block size,

the performance of the algorithm will no longer be I/O bound.

2



The banded eigenproblem is then transformed to {ridiagonal form using an enhanced ver-

sion of EISPACK subroutine BANDR. Finally EISPACK subroutine TQLRAT is used to

compute the eigenvalues.

Specified eigenvectors are computed by first computing the associated eigenvectors of the

band matrix and then back transforming them to Y using the acumulated block House-

holder transformations. Application of L to Y back transforms Y to .¥, the eigenvectors of

the original problem (1). The eigenvectors of the band matrix are computed using inverse

iteration implemented in a much modified version of EISPACK subroutine BANDV.

This algorithm has been implemented in a pair of subroutines HSSXGV and HSSXGI

which, respectively, compute the eigenvalues and a specified set of eigenvectors of (1).

The usage of these two subroutines as well as subroutines HSSXEV and HSSXE1, which

compute the eigenvalues and specified eigenvectors of (2), is described in [7]. A more

detailed description of the algorithms used is given in [6].

2. RESOURCE REQUIREMENTS

The new software makes extensive use of both the central processing unit and secondary

storage of a computer. This section will discuss the requirements of the algorithm for

secondary storage, amount of I/O transfer between central memory and secondary storage,

storage requirements for central memory, and the number of floating point operations.

Secondary storage for this algorithm is used to hold B which is overwritten with L, to hold

A which is overwritten with C and later the band matrix, and to hold the matrices W and

Y. Approximately n_/2 storage is used for each of the 4 matrices, thus the total amount

of secondary storage required is approximately 2r_2. A Solid-state Storage Device (SSD)

with 128 million words secondary storage with fast access on a Cray X-MP would allow

problems of order up to 8000 before overflowing the SSD to slower secondary storage on
disks.

The amount of I/O transfer between central memory and secondary storage storing the

matrices A, C and the resulting band matrix is 7nS/p real words. The I/O transfer for

the unit storing L, the Cholesky factor of B, is r,S/p. The total amount of I/O transfer is

The maximum central memory requirements for the new algorithm is

2rip + moz(4p 2, np + 3r_ + p, np + r++ pep + 1)),

where the three terms correspond to Cholesky factorization of/3, reduction to banded

form, and computation of the eigenvectors. A good working estimate for the amount of

central memory required in 3np. For the size of problems being considered (e.g., n = 5000

and p = 50) this is less than 1 million words of working storage.



The operation count for the computing the eigenvaluesof the eigenproblemin (1) by this

approach is approximately _n 3 + lOn2p + lower order terms. This operation count comes

from analyzing the 4 major components of the algorithm. The operation counts for these

components are as follows:

Comoonen_

Cholesky factorization

Reduction to standard form

Block Householder transformations

QR factorizations

Reduction of band matrix

Oneration Count

3
2n 3

n 3 + 2n2p

2n2p

6n2p

Total 113r_3 + 10n_p

For an execution with a = 1492 and p = 50 the monitored operation count was 13.3 × 109.

The operation count computed by the above formula is 13.2 × 109 which is within 1_ of
the actual count.

The computational kernels used in this algorithm are Cholesky factorization, block solves

with the Cholesky factor, QR factorization, matrix multiplication, and a banded elgenvalue

solver. All of these kernels except for those used in solving the banded eigenproblem

perform well on vector computers. In fact, they have computational rates in the 150

to 190 megaflop range on a CRAY X-MP for the problem sizes being discussed in this

application. The code is portable and can be implemented efficiently on other vector

supercomputers, whenever high performance implementations of the Level 2 BLAS [2] are
available.

3. PERFORMANCE RESULTS

A parameter study for the optimal choice of blocksize, p, was performed. A choice of 63

for the block size appears to be optimal on the CRAY X-MP for the size of problems

considered here. If a large number of elgenvectors will be computed a smaller blocksize
might be in order.

Table 1 compares the combination of HSSXGV and HSSXG1 with the performance of the

symmetric packed storage version of EISPACK and the block Lanczos algorithm described

in [5] on the same eigenproblems in that paper. HSSXGV and HSSXG1 used block size

63 for all problems. The statement of the eigenproblem is to compute all eigenvalues and

eigenvectors in the interval [-1.0,0.30].

4



Number of HSSXGV and Block

n Eigenvectors EISPACK HSSXG1 Lanczos

219 22 1.37 1.07 1.37

667 32 14.73 12.33 8.25

992 35 37.33 35.38 17.00

1496 35 108.54 88.74 47.70

Table 1.

Comparison of Performance with In-core Methods.

(Execution Times in Seconds)

HSSXGV and HSSXG1 not only allow larger problem sizes than the symmetric packed

storage EISPACK path but have an 18_ performance increase because of the block nature

of the computations. Block Lanczos is indeed faster than HSSXGV and HSSXG1 for these

eigenproblems. However, if more eigenvectors are required, HSSXGV and HSSXG1 is more

efficient than block Lanczos. For the largest problem above, n = 1496, HSSXGV would

become the algorithm of choice if 80 or more eigenvectors are required. Also HSSXGV

computes all the eigenvalues and assumes no prior knowledge of the spectrum. Both

Lanczos and the EISPACK path require an interval as input, and procede to compute

all the eigenvalues in the interval. Hence HSSXGV in Table 2 has computed additional
information.

The overall computational rate for the problems in Table 1 is given in Table 2 below. The

highest performance with 161 MFLOPS was obtained on the largest problem. This number

is quite remarkable since a significant amount of computation in the tridiagonal eigensolver

is carried out in scalar mode. Assuming this computational rate the new software should

be able to compute all the eigenvalues of an 8000 by 8000 dense generalized eigenvalue

problem in about 3.3 hours on a Cray X-MP/24 with 128 Mword SSD.

HSSXGV HSSGX1

n MFLOPS MFLOPS

219 74 51

667 127 66

992 128 72

1496 161 80

Table 2.

Performance in MFLOPS.

5



4. SUMMARY

Software for the out-of-core solution of the symmetric generalized eigenproblem has been

developed and implemented. Because of its block nature, this software is more efficient on

vector computers than a related in-core algorithm. If the number of required eigenpairs is

large, in particular in applications, where all eigenvalues and vectors are required, the new

software is more efffcient than a previous code of the authors [5] based on the Lanczos

algorithm. Most importantly, the new software allows efficient solution of problems too

large to fit in central memory thus providing an important computational tool to the

researches in quantum mechanics and other disciplines which generate large symmetric
generalized eigenproblems.

References.

[1] Bischof, C. and Van Loan, C., The WY Representation for Products of Householder Ma-

trices, SIAM J. Sci. Stat. Comp. 8, 1987, pp. s2-s13.

[2] Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R., Eztended Set of Fortran

Basic Linear Algebra Subprograms, Argonne National Laboratory Report ANL-MSC-TM-

41 (Revision 3), 1986.

[3] Garbow, B. S., Boyle, J. M., Dongarra, J. J., and Moler, C. B., Matriz Eigensystem

Routines - EISPACK Guide Eztension, Lecture Notes in Computer Sciences, Vol. 51,
Springer-Verlag, Berlin, 1977.

[4] Grimes, R., Solving Systems of Large Dense Linear Equations, ETA-TR-44, Boeing Com-

puter Services, Seattle, Washington, February 1987, submitted to Supercomputing and Its
Applications.

[5] Grimes, R., Krakauer, H., Lewis, J., Simon, H., and Wei, S., The Solution of Large Dense

Generalized Eigenvalue Problems on the Cray X-MP/_ with SSD, J. Comp. Physics 69,
Number 2, 1987, pp. 471 - 481.

[6] Grimes, R. , Simon, H., Solution of Large Dense Symmetric Generalized Eigenvalue Prob-

lems Using Secondary Storage, ETA-TR-XX, Boeing Computer Services, in preparation,
1987.

Grimes, R., Simon, H., Subroutines for the Out-ofcore Solution o/Generalized Symmetric

Eigcnvalue Problems, Report ETA-TR-XX, Boeing Computer Services, in preparation,
1987.

[8] Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C., and

6



Moler, C. B., Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer

Sciences, Vol. 6, Springer-Verlag, Berlin, 1976.

[9] VeetorPak Users Manual, Boeing Computer Services Document No. 20460-0501-R1, 1987.

[10] Wei, S.H. and Krakauer, H., Phys. Review Lett. 55, 1200, 1985.

7




